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The operation and control of the power system in an efficient way is important in
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grid, several new algorithms have been developed for improved operation and control.
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CHAPTER I

INTRODUCTION

1.1 Introduction

The electric power system is a complex network consisting of generation,
transmission, distribution, and electric power loads requiring real time balance. A power
system networks need to be highly reliable, secure, and economical using automatic
control and optimization techniques [1]. Power systems are highly dynamic and it is
essential to adjust the system parameters and controls in real time to accommodate the
change in energy load demand. Hence, power system monitoring, control and protection
schemes play a very important role in power system operation.

The aging grid infrastructure, growth in energy demand, market based operation,
integration of renewable generation and ongoing smart grid modernization initiative are
leading to further complex behavior of the power grid [2]. These developments and
complexities, demand for new technologies and solutions, will make the grid more
reliable and secure in current contexts. This research work focuses on development of a
real time power system test bed for testing new power grid operations and control
algorithms at the laboratory level before they are applied to the actual power system. This
work also addresses testing of algorithms related to wide area monitoring, real time
control, phasor measurement units, power system data acquisition and archiving methods

by using several hardware devices, software tools and power system simulations.
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1.2 Overview of power systems

This section describes the general overview of the power system including the
operation and control of the system and then focuses on the challenges faced by the

current power system network operation.

1.2.1 Power system structure

Conventional power system structures are comprised of three different parts:
generation, transmission and distribution. The generation units are generally located in
remote places to accommodate the higher MW size generation and space requirements.
Electric power is generated more commonly by using steam, gas or hydro turbines. Each
generating station may contain more than one generator, and depending on the type of
generation they are classified as hydro, thermal, nuclear etc.

The electric power generated at remote locations is transmitted to load centers
through a transmission network that essentially consists of transmission lines and
transformers. The transmission system may be further divided into sub-transmission lines
supplying electric power to industrial and other heavy loads after stepping down the
voltage level as needed. The distribution system is used to supply power to domestic
customers for home use and supplying three phase power for small scale commercial use.
The power generation stations generate electric power at generation voltages of 11kV to
35kV. These voltages are stepped up by the transformers to the typical transmission level
voltages of 138kV or 230kV and above [3-4]. Transmission at higher voltage reduces the
transmission losses by reducing the current and minimizing the power losses. These high
level voltages are then stepped down to sub-transmission levels, typically 26kV and
69kV and, are used to supply power to large industrial consumers, these are further
stepped down to distribution voltages of 13kV and 4kV for small or primary customers,

2
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and down to 120V and 240V for secondary customers [4]. The electric power system is
equipped with several sensors, actuators and control devices to balance the generation

with load demand in real time.

Color Key.
Blue:  Transmission J_l_ Subtransmission
Green:  Distribution L rd meRes Cust
Black  Generation Transmission Lines R Lstomer
765, 500, 345, 230, and 136 kV 26K\ and 63KV
Y
&0
Substation Primary Customer
Step-Down K 13kV and 4kV
Transformer,
Generating Station Trnsmissan 8 & ||Secondary Customer
Generator Step Customar ==l 11 120V and 240V

Up Transformer 138KV or 230KV

Figure 1.1  Basic Structure of the Electric System [4]

1.2.2  Power system operation and control

The continuous and reliable supply of electric power without any disturbances
through power system control is of prime importance to electric utility. A number of
power system devices are integrated to monitor continuous changes in the system and
also concurrently making control decisions to keep the normal operation intact and avoid
any unwanted impacts of disturbances.

Since the electric power is generated and consumed in real time, it is essential that
the system meets the continuously changing load requirements for active and reactive
power, maintaining near constant frequency and voltage [3]. Conventional power system
control comprises of generation, transmission and distribution controls. Generation
control includes control of frequency, voltage, speed and parameters for economic
operation. Transmission control includes active and reactive power control with

3
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minimum losses. Distribution system control requires transformer and compensation
control to keep the voltage at required level. Advancements in control, signal processing
and processing power technologies now allow wide area control where system-wide

disturbances are monitored and controlled at control center level in real time.

1.2.3  Challenges faced by the power system

The modern electric power system structure is evolved with significant
improvements over several decades but there are several other challenges which need to
be resolved. One important challenge for electric utilities is to operate the power system
in a stable and reliable manner with real-time balance of generation and load demand. At
the same time electricity markets would like to maximize the available transmission
capacity and operating the grid closer to its “true” limit [2]. The aging grid infrastructure
is a major challenge as it needs to incorporate a variety of changes due to the rapid
technological enhancements towards smart grid. Distributed generation, increased
interconnection of systems and also the concept of plug-in hybrid vehicles will alter the
grid more dynamically and randomly and it should sustain these impacts with enhanced
control for reliable and operational power grid. Challenges faced by the power system
operators are increasing and some of them are, to operate the power system with
minimum cost and at the same time to include growing demand, real-time demand
response, electricity markets and new intermittent renewable generation technologies

including plug-in-hybrid vehicle.

1.3  Real time control of power system

Historic studies of power system failures in various countries highlight the need

for more sophisticated monitoring and control of the power system. In case of August

4

www.manaraa.com



2003 blackout, the primary causes of the failure were poorly equipped monitoring
systems for operators, the lack of real time control actions taken in order to prevent the
cascading faults on the system, and the failure of the state estimator to quickly analyze
the system state and propose necessary solutions [4]. The primary cause of the
conventional state estimator failure is due to its dependency on non-synchronized
SCADA data to compute the power system states. In the case of August 2003 blackout it
was unable to solve the state estimation algorithm due to faulty data, more precisely due
to unavailability of one of the system states and the estimator failed to produce any
solution which further impaired the operator in handling the situation.

Time is of critical essence in the case of such failures. In case of 2003 blackout,
the entire system lost power in matter of few minutes after the start of cascading events
before any action was taken to control it [5]. This is mainly because the protection and
control schemes employed are purely based on models which are generated offline based
on previous system states but not on the actual current system conditions. These events
show the importance of real time monitoring and control. Time synchronized data
utilized by the state estimator to solve the system and present a real time system
situational awareness at every interval will be very useful. Further, the control center and
operators will be better equipped to handle the scenarios, if they identify the fault as soon
as it occurred saving precious time in taking the appropriate control actions. Real time
control is further strengthened in modern power system due to the introduction of
synchrophasors. Synchrophasors are time synchronized system data accurate to about

Ims and are obtained rapidly [6].

www.manaraa.com



1.4 Problem statement

The existing methods for power system protection and control include special
protection schemes (SPS) and remedial action schemes (RAS) along with tools for energy
management systems (EMS) to control a modern power system in case of failures. The
main problems with the above implemented schemes are dependency on extensive offline
studies using hypothetical scenarios and, equally importantly using models that possibly
include errors [2]. As reported by U.S Department of Energy in [4, 6], more blackouts are
occurring as a result of lack of automated analysis, slow response times of mechanical
switches, and a lack of situational awareness among grid operators. The growing demand
for electric power, increasing power system geographical area and integration of new
generation and dynamic control to push the system towards its limits for economic
operation are causing significant challenges in operation.

There is an immediate need to address the above issues by strengthening the gird
infrastructure with more responsive devices and elements, such as finding alternatives for
the existing protection schemes by a real-time adaptive control. These new developed
algorithms need to be tested and validated using real time simulation of power system
networks. Also, testing and validation is needed before implementation for all algorithms
to improve the power system data monitoring and alarming capabilities to assist the

operators, and to improve the grid visibility for better control.

1.5 Thesis Objective

The main objective of this thesis is to develop a platform to implement and
demonstrate a fully integrated power system and control through real time simulations
using Real Time Digital Simulator (RTDS) and other monitoring and control elements for
testing and validation of new developed algorithms. First, a fully functional power system

6
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test case is studied and developed using RTDS. Second, different hardware and software
components have been integrated with RTDS for implementation of a control schemes.
Third, for real time monitoring of the system, phasor measurement units (PMU) are
integrated into the test bed. Fourth, to build a fully functional test bed using Ethernet/IP
as the main standard, the PI data historian and a phasor data concentrator (PDC) have
been integrated for archiving and monitoring requirements. Finally the thesis seeks to
create a scenario in order to facilitate the cyber security studies on the power system.
Objectives include, using the developed test bed to validate the operation of real
time monitoring and control schemes by running different power system test cases on
RTDS. Additional objectives also include cyber security analysis and testing of power

system devices and components including the PI server, PMUs and PDCs.

1.6  Thesis outline

This thesis is organized into six chapters.

Chapter 2 briefly introduces the need for enhanced development and testing in the
area of real time operation and control. This includes an introduction to wide area
monitoring control along with cyber security aspects. It describes several hardware tools
and software HMI’s used in this work along with their application to this work.

Chapter 3 explains the development of real time test bed architecture along with
different hardware interconnections and settings. This chapter provides a thorough
explanation of the way the test bed is developed in an organized manner. This also
describes the several challenges faced and solved in the development of this test bed.

Chapter 4 presents the operation of the developed real time test bed by

introducing the developed power system test cases in RSCAD. Two test cases are
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explained along with corresponding modeling detailing the operation and data monitoring
of the test cases.

Chapter 5 explains the results obtained using developed test cases on the system.
It also proposes some of the applications using the test bed, including testing different
power system elements.

Chapter 6 summarizes the results obtained and the main conclusion regarding
benefits of having such a test bed at laboratory level for real time solutions. This chapter
also includes the several contributions and future enhancements of the test bed for better

operation and implementation of the system.
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CHAPTER II

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

There is an increasing need for real time power system modeling and simulation,
which are critical in the development of new control and stability algorithms for
emerging smart grid operation. This chapter introduces the need for real time simulation
studies and the current related activities reported in literature. Next, it introduces the
cyber security requirements for protecting the grid. Finally, a brief introduction of the test
bed is followed by a description of the hardware and software tools used in the current

work.

2.2 Wide area monitoring and control

One of the vital lessons learned from the recent power system blackouts is the
importance of real time monitoring and control and also the need for wide area system
visibility. These specific topics gained importance in the modern power systems and,
most of the electric utilities are equipped or planning to be equipped with sophisticated
infrastructure to provide real time view of the wide area power system network. The
cascading failures in the previous blackouts are attributed to the lack of a system wide
view of operating conditions and failure to take necessary action in real time [7].

Phasor measurement units (PMUs) offer the measurement of voltage and current
phasors together with synchronized satellite triggered time intervals down to 20 ms [8].

The PMU devices are used in the current power system architecture for wide area
9
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monitoring and control applications. PMUs offer considerable advantage over the
traditional SCADA based methods of data acquisition because they update the system

state in real time, thus acting as powerful tools for power system visualization.

2.2.1 Phasors and synchrophasors

All voltages and currents in a power system can be represented in terms of
phasors, which are essentially measurement quantities consisting of voltage magnitudes
and corresponding phase angles. The phase angles are measured with respect to certain
reference voltage bus. With the introduction of Global Positioning System clocks, a
standard reference is created depending on the satellite clock and, the phase angles are
measured corresponding to the reference. The satellite clock is the same anywhere in the
world and, therefore the phasors generated across a power system network can be used
for studying its operating state in real time. These time synchronized phasors are called
synchrophasors and, each synchrophasor message provides a magnitude and phase angle
for each quantity with a time stamp. The Figure 2.1 shown below provides an important

comparison between traditional SCADA methods and the synchrophasors.

10

www.manaraa.com



SCADA Data Phasor Data

Refresh Rate 2-5 Seconds Refresh Rate 30 Samples's
Latency and Skew Time Tagged Data, Minimal Latency

“Oikder” Legacy Communication Compatibke with Modem Communication

Technology
Responds to Static Behavior Responds to System Dynamic Behawvior
Freq Change Means: Angle-Pair Change Means:
Generation-Load Imbalance MW Change or “Electrical Distance
Changea™
X Ray MRI

Figure 2.1  SCADA versus PMU measurements [2]

2.3  Cyber security

The modern power system incorporates a high level automation which is further
expanding to make the electric power grid more stable and reliable. The recent increases
in technological changes are introducing a large number of computer software automated
methods for data acquisition and control. Modern power system consists of improved
communication infrastructure and also a huge amount of critical system information
flowing through the network. The current electric systems employ a large number of
communication protocols which includes high speed LAN, radio, microwave or fiber
optic medium for data transfer and are susceptible to cyber threats.

As reported in [9] “The operation and control of the current power grid depends
on a complex network of computers, software, and communication technologies that, if
compromised by an intelligent adversary, could be used to cause great damage, including
extended power outages and destruction of electrical equipment.” Cyber security of the
power grid is of paramount importance because of the huge economic losses the previous

11
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blackouts caused. An important factor to be considered is that a cyber attack can be
launched from anywhere in the world and can be targeted remotely to cause enormous
disturbance to power system network, leading to widespread interruption of energy
supplies and operations [9-10].

Hence, there is a need to develop cyber security analysis methods to secure the
grid. The first priority is the testing of the devices that are remotely controlled through
computers for vulnerability to cyber attacks. A large number of devices employed in the
current power system network are focused on their operational efficiency and advantages
rather than considering their ability to shield themselves from cyber threats. The current
study on developing a test bed provides an ideal setup for testing of several power system

devices.

2.4 Real time power system test bed

As the electric power system is moving towards the smart grid (SG) development
for improved reliable, secure and economic operation, implementation of such a system
requires enhanced testing and validation [6, 11]. Most of the control action schemes
mainly rely on extensive offline studies using hypothetical scenarios and models that
possibly include errors [2]. Current developments in control schemes are also more often
theoretical and non-real time based models which are rarely evaluated. There is a need
for testing and validating these ‘Real Time Monitoring and Control’ techniques involving
different hardware equipments to achieve flexibility, ease of operation, interoperability,
control validation, and more importantly redundancy of the control schemes. Testing on a
real time test bed helps considerably in studying the power system interactions, when

new control or protection schemes are applied on prototypes rather than the actual

12

www.manaraa.com



system. This test bed also helps to perform a variety of simulations consisting of only
software, hardware or combined simulations for predicting specific operational times.
The test bed also provides a flexible window to alter the test cases and power system

architectures to run multiple tests on a single platform.

2.4.1 Previous work

There are certain research efforts performed previously on real time test bed and
wide area control and this section of the chapter will highlight a few important works in
this area and their limitations.

Authors in [12] presented a working model for remote hardware loading studies
over the World Wide Web. The developed model consists of two sections, power system
infrastructure and modules for testing software and communications which are helpful in
conducting the test from remote location. Authors in [13] also present a different
approach to computerized data acquisition for power system automation by simulating a
power system prototype for data acquisition from several devices involved in the system.
The ultimate goal was to develop a better database for power system operation and
control. There are other works like [14], but they either depend on software analysis or
limited hardware tests. The limitations of such works are that the power system
architectures cannot be drastically altered due to limitations of hardware; these works do
not incorporate the synchrophasor devices for real-time operation. They also provide only
a minor study on security protection with a password authorization which is vulnerable in
this modern internet age.

Industrial practices of synchrophasor applications are rapidly making strides as

compared to the previous years. The North American SynchroPhasor Initiative (NASPI) a

13
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combined effort of North American Reliability Council (NERC) and Department of
Energy (DOE) along with other vendors and utilities are primarily responsible for this
advancement. The main vision of this group is to improve power system reliability
through wide-area measurement, monitoring and control [15]. The utilities for the most
part in the past are equipped with only few PMU installations and are rarely used for their
critical applications, but with recent Smart Grid initiative and the increasing awareness of
PMU applications has led to a rapid development and deployment of PMUs in the power
grid. The latter part of this research work demonstrates an application of synchrophasors
for wide-area measurement and monitoring of power system network.

The current research work incorporates all the basics of the previous efforts to
certain extent and enhances the test bed development by incorporating the following
advantages:

1. The developed test bed possesses the flexibility to carry out multiple tests on

different power system architectures.

2. It prototypes the actual power system very closely by including the remote

control center and redundant control elements in case of failures.

3. It acts as single platform for testing different relays, PMUs and PDCs.

4. It includes a data historian for monitoring and archiving all the power system

data, including the synchrophasor messages.

2.5 Hardware and software tools employed

This section of the chapter provides an overview of the hardware and software

tools employed in the development of the test bed.
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2.5.1 RTDS and RSCAD

The Real Time Digital Simulator (RTDS) is an electromagnetic transient based
system power system simulator which simulates power system models in real time. This
is unique in the sense that it utilizes parallel processing technique of digital signal
processors and executes the program developed on its processors and produces output
both graphically and through the output interface cards incorporated into the system.
Power system programs are developed using RSCAD user interface which is specially
designed for RTDS and is used for both development of the different power system
scenarios and also for viewing and studying the results graphically [16].

RSCAD provides the main interface for RTDS and is a powerful tool. Users can
build different power system test cases using RSCAD and then simulate them on RTDS.
The software consists of many common power system components in its library along
with different control components [17]. RSCAD has three main components:

1. The file manager window through which users can access previously
developed programs and other files.

2. The draft window in which the power system model is built using the
available components.

3. Finally the run time window which produces the real time output for the
users through multiple plots and meters.

The RTDS present in the research lab at Mississippi State University consists of
two racks with eight triple processor cards and two Giga processor cards, in addition it
contains several input and output interface cards for sending and receiving analog and
digital signals. One of the important interface cards used in this work is the Digital to

Analog Converter Card (DDAC) from which 12 signals can be sent out of the RTDS;
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front panel inputs can also be used to send the digital control signals into the RTDS to
control the elements in the simulated power system. Figure 2.2 shows the Real Time

Digital Simulator at MSU.

Figure 2.2 RTDS at MSU power and energy research lab

2.5.2 National Instruments hardware and software

National Instruments PCI eXtension Interface system (NI-PXI) is a real time
embedded controller from National Instruments used for real time testing purposes. Built
on the PXI architecture which is an open PC-based platform for test measurement and
control [18], this system is a low cost high performance model used in various
technologies. The system consists of three main components: chassis, system controller
and peripheral modules. The chassis provides a rugged and modular packaging for the
system, it also contains the high-performance PXI backplane, which includes the PCI
bus, timing and triggering buses.

The NI-PXI system at the MSU research lab shown is in Figure 2.3. It is a

standard 8 slot 1084Q chassis consisting of a NI-PXI 8196 Embedded Controller and two
16
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I/O 6608 and 6251 cards responsible for sending and receiving analog and digital signals
in and out of the controller. The controller is a stand-alone system running a program

written in LabVIEW software.

Chassis

Controller

(1] PXi A|® @ & ® ® ©® @

Modules

Figure 2.3  NI-PXI system with 8 slot chassis [19]

The NI-PXI 8196 real time controller is installed in slot 1 of the chassis. The 8196
controller is a high performance Pentium M processor and is equivalent to the 3.0 GHz
Pentium 4 system [18]. The controller comes integrated with express card slot, GPIB
interface, and four USB ports. The communication channels include serial, parallel and
high Ethernet ports. The controller is the core of the NI-PXI system and runs on
Windows or LabVIEW real time operating system. When the system boots up, the
controller recognizes all the peripherals and initiates the start of the embedded program

for real time simulation. Figure 2.4 shows a NI-PXI 8196 controller.
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Figure 2.4  NI-PXI 8196 Real time controller [18-19]

The peripherals included in the system are the NI-PXI 6251 and 6608 data
acquisition cards. These cards are used as main interfaces for sending analog power
system data out of the RTDS and for sending digital control signals into the developed
power system. The NI-PXI 6251 shown in Figure 2.5 is a National Instruments M series
multifunctional DAQ card capable of operating at maximum data acquisition rate of 1.25
M samples/sec. It includes analog and digital triggering along with 16 analog input

channels, two analog outputs and 24 digital I/0 channels.

Figure 2.5  NI-PXI 6251 Analog input DAQ card [18-19]

The National Instruments PXI-6608 is a high precision timing and digital /O
module with eight 32-bit counter/timers and 32 lines of digital I/O. The NI PXI-6608

features a 10 MHz oven-controlled crystal oscillator for high-precision applications. This
18
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interface card is particularly used in the current work for sending digital control signals
from external devices to the power system simulation running on the RTDS for real time

control. The NI-PXI 6608 is shown in Figure 2.6.

Figure 2.6 NI-PXI 6608 Digital 1/O card [18-19]

National Instruments LabVIEW is used as the main software interface tool for
establishing operational functionality between different devices. LabVIEW stands for
Laboratory Virtual Instrument Engineering Workbench. It is a user-friendly graphical
programming language used to develop applications for measurement and control. The
applications developed in LabVIEW are called Virtual Instruments (VIs) due to their
similar appearance and operation to the real world instruments.

A LabVIEW VI contains two main parts,

¢ Block Diagram

+ Front Panel
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The block diagram is the actual executable program written using different

components which are connected using connectors. The front panel is essentially a user

friendly interactive interface consisting of controls and indicators which display the

output of the program after execution. The block diagram is written by using different

blocks of code varying from simple addition block to complex signal processing blocks.

The VI method of developing application is very powerful as it provides a visual

execution of the written code and is easy to debug. The front panel can be user defined

and is made as simple as possible with good visual constructs to analyze the output easily

and efficiently. The following Figure shows the two main parts of LabVIEW,
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LabVIEW block diagram and front panel [18]
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The Measurement and Automation Explorer (MAX) is the simplest and the best

way to access and manage NI hardware. It manages all the hardware including any real

time controllers and the software installed on the controllers. The I/O cards can be
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accessed and tested from the MAX interface. It acts as the main interface between the

host and the remote targets. The MAX user window is shown in the following Figure 2.8.

& pXISystem - Measurement B Automation Explorer

File Edit View Tools Help

My System
& (3l Data Meighbarhoad Identification |P Settings
m--ﬁ‘ Devices and Inkerfaces Model: P1-8196 () Obtain an IP address automaticaly
Eg Historical Data Serial Number:  2FOAIDEE (&) Uze the following IP address:
-4 Scales

B-{Sj Ciktware MAC Address: 000802k 0a:90.e2 [Sugg&st\u"alues } [ ToDefait ]

) M ame; FilSystem
. IVI Drivers
E]“@ Remote Systems Spstern State:  Connected - Running IF Address: 10 .200. 3 164
R PLjetem SubnetMask: [ 255 255 285 O
- [all Data Meighborhood Comment;
m-ﬁ‘ Devices and Interfaces Tl I:l
" oo o) I ——
MI-DACmy Devices
) NIPXI-6608: "Dev1” [ Passwiordprotect Resets Halt spstem if TCPAP fails
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- ﬁ RIC Devices
& y Serial
44 Scales
[]-5] Software NG

S

Remote NI-PXI
system hardware

T Network Settings System Seltings

#=+ Connecked - Running

Figure 2.8 ~ MAX software user window

The drop down menu on the left of the MAX user window provides a list of all
the available hardware and software installed locally and remotely. The right side

window panel is pointing to the remote PXI target IP settings for communication.
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Figure 2.9 MAX window displaying remote system configuration

2.5.3 Allen Bradley Compact Logix and RSLogix 5000

Allen Bradley Programmable Automation Controllers (PACs) are highly
integrated systems providing a single control architecture for discrete, drives, motion and
process control systems. The PAC system used in the current work is THE Compact
Logix L35E system. Compact Logix provides the benefits of a common programming
environment, common networking protocols, and a common control engine in a small
footprint with high performance [20]. The Compact Logix 1769-L35E system is
connected to the Ethernet network through an integrated port for real time applications.
This system includes a Programmable Logic Controller (PLC) and I/O modules for

control applications and is programmed by using RSLogix 5000 software.
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Figure 2.10  Allen Bradley Compact Logix system [20]

RSLogix 5000 is a simple easy to use integrated software suite for programming
PLC applications. RSLogix 5000 software offers an easy-to-use, IEC61131-3 compliant
interface, symbolic programming with structures and arrays and a comprehensive
instruction set that serves many types of applications. It provides ladder logic, structured
text, function block diagrams and sequential function chart editors for program

development.

2.5.4 SEL hardware

This section of the chapter provides a background view of the Schweitzer
Engineering Laboratories (SEL) hardware used. The devices integrated in the test bed are

the SEL 421 Relay/PMU, the SEL-3306 PDC and the SEL-2407 GPS clock.

2.5.4.1 SEL 421 and AcSELerator

The SEL-421 is a Protection Automation and Control System consisting of relay
based functionality along with synchrophasor measurements. The SEL-421 is a fully

advanced automation system with integrated Ethernet, DNP3 and IEC 61850 protocols
23
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for communications [21]. It also has provision for GPS clock input for synchrophasor
application and provides Digital Fault Recording (DFR) with COMTRADE output
format. AcSELerator Quick Set software is used to communicate with the device to
download event reports using FTP and Telnet and also to alter device settings. The SEL
421 system is implemented in the test bed as a Phasor Measurement Unit for providing

synchrophasor messages in compliance with IEEE C37.118 standards.

Large display facilitates Display navigation confrols Detailed, programmable targets
installation and diagnostics make more information provide fast and simple information
while eliminating the need readily accessible. fo assist dispafchers and line crews
for panel meters. for rapid power restoration.

ElA-232 front
serial port for
quick, convenient
system setup,
checkout, and

SEL provides a
ten-year warranty
and -40° to +85°C
temperature range -

focal access. best in the industry.
High-accuracy RMS metering Programmable control pushbuttons Use relay pushbuttons and
provides +0.5% of reading provide local switches to replace serial communications to
energy indication. fraditional panel switches. employ 32 latching switches, 32 local

switches, and 32 remote switches in
your automation system.

Figure 2.11 SEL-421 Protection, Automation and Control system [21]

2.54.2 SEL-3306 PDC

The SEL 3306 is known as the Phasor Data Concentrator because it collects
synchrophasor measurements from a number of PMUs and sends them to external
devices. This PDC simplifies the task of gathering data from different PMU stations by
the central computer without actually connecting to each PMU. The key features of the

SEL 3306 include synchrophasor data concentration, protocol conversion, and media
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conversion in a rugged, station-hardened device [21]. The PDC present in the MSU
Power and Energy research lab is capable of connecting to 15 PMUs devices serially and
40 devices over Ethernet. It also transmits phasor data to six external devices
simultaneously and has a provision for IRIG-B connection. The synchrophasor messages
can be collected as IEEE 37.118, IEEE 1344, and SEL Fast Message protocols, and can
be converted to other formats for transmission. The 3306 system has a simple browser
interface for interacting with device settings and also for visual streaming of the
synchrophasor data. The following figures show the front panel and the browser interface

of the system.

Figure 2.12 SEL 3306 Phasor Data Concentrator [21]
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Figure 2.13  SEL 3306 Synchrophasor visualization window

2.54.3 SEL 2407 Satellite synchronized clock

The SEL 2407 is highly accurate, reliable and precise satellite synchronized

clock. The clock is accurate to +/-100 nanoseconds. It provides six demodulated IRIG-B

time code outputs for synchrophasor applications.

_ SEL-2407

Figure 2.14 SEL 2407 Satellite synchronized clock [21]
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2.5.5 GE PMU and Enervista

This section of the chapter provides background information on the GE hardware

and software applied in the test bed development.

Enervista is a software suite for configuring and managing all devices in GE

Multilin product line for power system applications. It provides an intuitive GUI interface

where users can connect with any GE Multilin device and, can monitor and control the

device applications. This suite is primarily used in the current study for configuring the

GE hardware for monitoring and transmitting synchrophasor data. Figure 2.15 shows the

user window of the Enervista software suite.
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Figure 2.15 Enervista user interface
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2.5.5.1 GE-D60 Line distance relay and PMU

The D60 is a high-end, cost-effective distance protection relay intended for
protecting transmission lines and cables which provides reliable and secure operation
[22]. The D 60 is used for different distance tele-protection schemes as it is primarily
operated as a distance relay. It is implemented in the test bed as a synchrophasor

measurement device, to provide data according to IEEE C37.118 protocol over Ethernet.

Figure 2.16 GE D60 Line distance relay and PMU [22]

2.5.5.2 GE-N60 PMU

The N60 Network Stability and Synchrophasor Measurement System is a flexible
device intended for the development of load shedding, remedial action, special protection
schemes, and wide area monitoring and control [22]. The N60 system is capable of
performing communications over DNP3, MODBUS, IEC 61850 and Ethernet. This
system provides additional functionality of event recording, synchrophasor data storage
and advanced automation. The N60 system at MSU consists of two phasor measurement
units capable of providing synchrophasor data in real time over Ethernet. The system
sends synchrophasor data over Ethernet network either in UDP or TCP/IP

communication protocol to external devices.
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2.5.6 OSI PI Historian

Monitoring and archiving large quantities of power system data in real time using
traditional database techniques is tedious and time consuming. The OSI Soft PI historian
is a state-of-the-art data monitoring and archiving software for managing large amounts
system data which has been successfully implemented in power system industry in recent
times. The PI system acts as a highly reliable repository for monitoring and archiving
synchrophasor data. For MSU PERL research, the PI system is used as the main tool for
monitoring real-time power system data, archiving it for later investigative studies and
for that reason it proves very beneficial. The following Figure 2.17 shows a general

architecture of PI system in real world.

Firewall
Monitoring
Interface(s)
(Buffered)

Server

LIMS Systems

TR

Manual Data

Maintenance Systems
Plant level app servers

PLC/ Instrument
Systems

Figure 2.17 PI system architecture in an industrial setting [23]
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2.5.6.1 PI OPC interface
OPC (OLE for Process Control or Open Connectivity) is a standard established by

the OPC Foundation to allow applications to access plant floor process data in a
consistent manner. The PI OPC interface is configured using the PI Interface
Configuration Utility (PI ICU) to acquire data in the OPC standard industrial protocol.
The PI OPC interface is used in this project for sending and accessing power system data

from the Programmable Logic Controller for monitoring and archiving purposes.

2.5.6.2 PIC37118 interface
The PI C37.118 interface is developed by OSI Soft for handling the

synchrophasor data from power system applications. The PI system collects the IEEE
C37.118 standard synchrophasor data in real time at preconfigured message rate by
running this interface. In the current work, this interfaced is configured to handle data
coming from four phasor measurement units at a rate of 60 msg/sec. It currently handles

283 tags coming from different devices, and is capable of trending them in real time.

2.5.6.3 PI system management tools

The PI System Management Tool (PI SMT) suite is the core of the PI system. The
PI SMT consists of different subcomponents for configuring the data and security
features of the PI system. Key features include point builder for creating new data tags,
current values, PI security keys, operations, and alarms. The PI SMT includes a
connection manager for establishing a connection between the PI host server and the
client server. Each connection is created in the host by providing trust authentication for
the incoming connection, and is highly secure. The point builder is used to create new

tags from scratch based on their data type and interface source type.
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2 Interface List - PI System Management Tools

File  Wiew Tools Help Close
Collectives and Servers W[E=" ﬁ | @ J
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OPCIrt1 Plsystem 1301865203 WIN-MTOLPHLILBMN N 1 opcint Unknown
130.18.65.203 FIC371181 1301866203 power-lab Cari1e 1 C37118 Stopped AL PI-PICIZ11E

System Management Tools
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[# Batch

= Data
Archive E ditor
Current Values
Stale and Bad Paints

= Interfaces
AutaPointSyne List
Interface List

[+ IT Paints
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Digital States
Performance Equations
Paint Builder
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Firewall < | >
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Mappings & Trusts

Session Record

¢ 5 97272010 2:56:08 Pk [POWER-LABMSLU) PI-IFL> Enor retrieving service information for \Ww/IM-MTOLPHLILEMAOPCInt1: Cannat open Service Control Manager on
Security Settings computer WIN-MTOLPHLTLBM'. This operation might require other privileges. [Access is denied)[Get ServiceName)[Processdocessor:Initislize) [Getinterlfacesal |

POWER-LABIMSLI | piadmin Ready

Figure 2.18 PI system management tools window

2.5.6.4  PI process book

The PI Process Book is a user friendly display interface tool for visualization of
PI system data. It is used to create real time trends and other graphical displays which can
be populated with live data for monitoring applications. It efficiently displays data
residing in the PI system and other sources with ease and demonstrates wide functionality
in exporting the data in different industry standard formats. The current work utilizes the
Process Book to monitor and archive power system data along with synchrophasor
messages. The Process Book provides a powerful interface to monitor and perform

calculation on real time synchrophasor data.
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2.5.7 PMU connection tester

The PMU connection tester is an open-source software tool developed by the
Tennessee Valley Authority (TVA) for testing the data streaming from phasor
measurement devices. It is a simple, yet powerful tool and is capable of handling IEEE
C7.118, IEEE 1344, BPA PDC stream, SEL fast messages and Macrodyne protocols.
This tool has the added functionality of capturing the synchrophasor data, configuration

file, and also contains a playback option for viewing test data.
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File  Help
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s 0 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 OO
AR R 00 00 00 00 00 0O 00 0O 00 00 0O 00 0O OO ...
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Figure 2.19 PMU Connection tester software tool

2.5.8 Wireshark

Wireshark is a network protocol sniffer used to analyze bidirectional Ethernet

traffic through a PC. It is the most widely used application for performing laboratory
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testing and for analyzing common network protocols. The important features of the tool
include high speed live data capturing, offline analysis, and filtering of different protocols
while capturing. Wireshark is extensively used in the current work for studying
synchrophasor messages, transmission and reception port addresses, and for analyzing

network security issues.

Table 2.1 List of hardware used

Name

Real Time Digital Simulator (RTDS)
NI PXI 8196 Controller
NI DAQ Cards 6733, 6608
SEL 421 Phasor Measurement Unit
SEL 3306 Phasor Data Concentrator
SEL 2407 Satellite Synchronized Clock
GE D60 Line Distance Relay and PMU
GE N60 Phasor Measurement Unit
Allen Bradley Compact Logix L35E System

A I Il B Bl I e

Table 2.2  List of software used

Name

RSCAD 2.010.3
LabVIEW Real Time 8.5
Measurement and Automation Explorer 4.7
AcSELerator Quickset Software 4.9
RSLogix 5000

PI System

PMU Connection Tester
Wireshark

Allen Bradley Compact Logix System

A e IRl B B ol Bl B M

33

www.manaraa.com



CHAPTER III

DEVELOPMENT OF TEST BED AND RESEARCH CHALLENGES

3.1 Overview of test bed architecture

The development of the power system test bed for executing real time simulation
is the major task of the current work. There are several steps proposed for the test setup to
provide real time simulation, wide area monitoring and control in real time. The test bed
developed at MSU is designed to meet the following requirements:

1. A very close representation of the actual power system with real world
power system and control components integrated into it.

2. Flexible enough to conduct different software and hardware in loop
simulations in real time with interoperability.

3. Uses an easily adaptable Ethernet/IP and other communication system
with possible studies of cyber security issues.

4. Provides a monitoring and control interface for remote operations.

5. Stores the power system data for monitoring and for subsequent
investigative studies.

The integration of various hardware devices is done through Ethernet, serial port
connection, radio signals or a hard wired connection. Power system test cases are
developed in RSCAD and executed on the RTDS. Scaled signals from the simulated
system are sent to the PLC which is integrated with RTDS using the NIPXI system. As

there is no direct connection procedure devised to connect Allen Bradley Compact Logix
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PLC with RTDS, the NI-PXI system is used for interconnection and monitoring power
system data. The block diagram of the developed test bed architecture is shown in Figure

3.1.

SEL Hardware

Remote Control Center

r—\

Programmable Logic Controller

HMI HMI | P NIPXT k- - - - |

RS Logix 5000 LabVIEW RT Controller

EthernetTP === cccemmeeea-n Wireless Ethernet —_——— = Hardwired

Figure 3.1  Developed test bed architecture

As Figure 3.1 illustrates, a remote control center is installed with Compact Logix
PLC and HMI for remotely monitoring the data and sending the control commands over
the wireless Ethernet. RTDS signals are hardwired to the SEL devices such as PMUs for
monitoring the system and fault protection. In similar manner, the PLC is connected to
the NI- PXI through the DDAC cards on the RTDS and the DAQ cards on the PXI

system. The control logic is written using the RSLogix 5000 tool for both the local and
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remote PLC’s. The NI-PXI uses Ethernet/IP suite available in LabVIEW to write and
read data from the PLC data tags by directing the system to PLC IP address. The HMIs
shown in Figure 3.1 are the corresponding software suites needed for the hardware
operation. One important part of the test bed is the PI server system which is connected to
the same Ethernet switch and acquires the system data in real time. The data acquisition
is done by the PI server OPC interface. The RTDS data is accessed from the LabVIEW
using OPC protocol, and the PMU (Figure. 3.1) data can be accessed by C37.118
interface installed on one of the systems. The detailed development and operation of the

test bed is explained in the subsequent sections of this chapter.

3.2 Data transfer between RTDS and external devices

The RTDS presents different output options for sending data to external devices.
The Triple Processor Card (3PC) and the back panel converter cards are used for analog
data transfer from the RTDS. The interface panel inputs provided for the RTDS are used
for sending digital control signals into power system simulation for breaker controls. The
RTDS is interfaced with the PLC using National Instrument’s NI-PXI system and DAQ
hardware for mutual data transfer. The NI system is used to facilitate integration of
RTDS with PLC and also for providing an intermediate level monitoring platform. The

following section explains the several steps involved in this setup.

3.2.1 Connections to the NI-PXI system

A general hard wired connection is provided from the RTDS 3PC analog output
ports to the SCB 68 I/O connector block, after enabling the ports in the RSCAD
simulation. The connector block is further connected to the NI-PXI system using the

proprietary National Instruments standard cables provided. The PXI system houses the
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6251 and 6608 1/O which acquires analog data and sends digital control signals to the
PXI system. The current setup consists of six outputs from the GPC expandable up to 48

connections and two incoming digital signals that are enabled in the interface panels.

Connector block

Figure 3.2 RTDS to PLC connection outline

The SCB 68 is the connector block used for connecting the PXI DAQ cards with
the analog output wires from RTDS. Quick reference labels from NI are used to provide
the necessary connections. The M series and 66XX label guides provide the required
connection specifications. The SCB 68 uses Reference Single Ended (RSE) [24]
configuration modes for providing the connections to GPC analog output ports and the
differential mode for the digital inputs to the RTDS. The following Figures 3.3 and 3.4

illustrate the connection described:
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Figure 3.3

SCB 68 Channel connections for NI-PXI 6251 [24]
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SCB 68 connections for NI 6608 [24]
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3.2.2

National Instruments PXI system

The NI-PXI system is a real time controller with embedded developed VI’s for

several possible applications. The Ni-PXI system setup is configured using the NI

Measurement and Automation Explorer (MAX) software. The system is connected to PC-

running LabVIEW software through Ethernet/IP. The controller running on windows OS

is configured an IP address for communication with LabVIEW from MAX window. The

MAX interface is used to install the required software and for connection monitoring

with the PXI controller. The following Figure 3.4 shows a visual image of the setup

menu.
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Figure 3.5

PXI setup window in MAX interface
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The PXI system is first installed by adding a new remote device, and identifying
the NI hardware devices. The IP settings are then entered in the MAX system setup
window for PXI communication and the device is rebooted. The connection status is
observed as shown in Figure 3.5, and the recommended software is installed after right
clicking the device on the left pane in the MAX window. The devices and interfaces tree

is also expanded to check for necessary hardware installed on the system.

3.2.3 LabVIEW modeling

LabVIEW is the software HMI implemented for developing a VI for data transfer
between RTDS and the PLC system. The developed LabVIEW model acquires the analog
data from RTDS using an in built DAQ assistant component. The analog data is
displayed continuously and also written to the PLC. The analog data from RTDS is
converted to OPC data and written to the PLC using the Ethernet/IP industrial
communication driver provided by National Instruments. The driver provides a simple VI
component to which data is written in LabVIEW by pointing to the device IP addressing.
The data from PLC is also read into the LabVIEW VI in a similar manner. The following

Figure 3.6 shows the overview of developed LabVIEW model.

LabVIEW MNodel

Acquire, Display, Transfer

RTDS €«—> PLC

PXTSvstem
Figure 3.6  Implemented LabVIEW model
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3.3 Integration of PLC and remote control center

The PLC system present in the MSU PERL is commissioned as local control
station for the test bed, and a remote control center is established in another different
physically located MSU Department of Computer Science and Engineering building. The
remote control is essentially a SCADA lab used for cyber security research studies. The
local PLC connects to the remote control center using a wireless Ethernet through the
radio network. An antenna system installed on the Simrall ECE building roof top is used
for communicating with remote center. The local PLC is connected to an identical PLC in
the SCADA lab and exchanges periodic signals in between them. The remote PLC
actually acts as a backup to the local PLC and provides all data from the local PLC for

monitoring in the remote control center.

3.4 Phasor measurement units integration

The PMU devices are hardwired into the RTDS system to facilitate HIL
simulations and for real time monitoring of the simulated power system. The Power and
Energy Research Lab (PERL) is equipped with one SEL 421 PMU and three GE PMUs.
The SEL 421 is a dual purpose PMU used for both industrial and laboratory applications
and is hardwired to the six channels of the RTDS DDAC card. Omicron CMS 156
amplifier is used to amplify the currents and voltages for feeding into the GE PMU
devices. The GE PMUs are connected to the RTDS through the amplifier to the RTDS
backplane through the remaining six channels. The data is duplicated into the three GE
PMUs for testing purposes and the limited availability of the amplifier channels. The
PMUs monitor the simulated power system data and transfer the data to the PDC, and
display the synchrophasors in their corresponding user interfaces. The following sections
explain the PMU connections and settings applied in their implementation.
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3.4.1 Connecting cables

Since the development of the test bed involved integrating numerous hardware

devices together, it is important to list the details of the connection cables used for the

test bed implementation. This section provides essentially a list of connection cables used

for synchrophasor measurements with PMUs and PDC.

Table 3.1  Connecting cables
To From Cable
SEL 2407 (Clock) SEL 421 C953
SEL 2407 (Clock) GE relays C953 (T Joint)
SEL 421 (PMCU) Computer (commands) C234A
SEL 421 (PMCU) PDC C276
GE D60 (PMCU) PDC (data) Ethernet
GE N60 (PMCU) PDC (data) Ethernet
SEL-3306 (PDC) Computer (commands) C235
SEL-3306 (PDC) Computer (data) Ethernet
PI Interface Client PDC Ethernet
PI Server Host PI Client Ethernet

The GE PMU and the Omicron amplifier are connected with hard wires labeled

sequentially to identify currents and voltages. All the Ethernet connections are provided

through a dedicated 100 Mbps Multilin ML2400 managed switch. The OSI PI server host

and client are connected to the switch to capture the data for archiving and monitoring.
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3.4.2 SEL and GE PMU settings

The SEL 421 is a line distance protection relay with added functionality to
provide synchrophasor measurements. First, a serial connection is established to the
device and a second level access is achieved to change any setting on the device. The
SEL 421 synchrophasor measurements are enabled by setting the ‘EPMU”’ to ‘Y’ in the
device global settings and the IRIG clock source is checked. The SEL 421 working mode
of PMU operation is checked in the terminal window by sending the ‘met pm’ command

to the device. The following Figure 3.7 shows the synchrophasor operation in SEL 421.
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Level 1
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Figure 3.7  SEL 421 PMU status through MET PM command execution
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The GE N60 is a network protection system and GE D60 is a line distance
protection system. The devices are capable of providing synchrophasor measurements
and sending the data to external devices. The software interface to enable synchrophasor
measurement settings is basically the same for both the devices, EnerVISTA software is
used for this purpose. The settings include enabling the scaling factors for the CT and PT

measurements, and also for transmitting data externally to the Phasor Data Concentrator.

The following Figures 3.8 and 3.9 show the GE PMU settings.

1% | et Detault

“_ 2 Phize CT Primary 14583 A
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ﬁ
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|T|:|7 £ F Phiaze %T Connection Wiye
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o Instalation ﬂ Aupdliary YT Connection Yag
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Figure 3.8  Scaling factors setting in the GE PMUs
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Figure 3.9  Synchrophasors enabled GE PMU

3.4.3 Phasor data concentrator settings

The SEL 3306 is the core of the synchrophasor network in the developed test bed.
The PDC acquires the synchrophasor messages at 60 msgs/sec and transmits the whole
data externally to the PI server system. The SEL 421 PMU is connected serially to the
PDC, and the GE PMUs and the PI system are connected over the Ethernet network. The
PDC Ethernet and serial port are need to be configured to enable the data communication,
and is achieved by using the PDC browser interface.

The SEL 421 is connected to the PDC serial port 2 with C276 cable, and the GE
PMUs are connected over Ethernet to the PDC. The corresponding port settings are

enabled in the PDC as shown in Figure 3.9
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Figure 3.10 PDC settings for the PMU data

The data from the PDC is sent to the PI client in IEEE C37.118 message format
by enabling the output ports, and finally all settings are saved by loading the

configuration to the PDC (Figure 3.10).
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3.5 Deployment of OSI PI historian

The OSI PI system is deployed as the main database historian for monitoring and
archiving power system data. The PI historian is chosen for its advanced functionality in
the industrial data management, and with release of C37.118 interface, this software
became one of the most successful implementations in the synchrophasor industry. This

section of the chapter explains the PI system architecture in the current test bed.

3.5.1 PIsystem architecture

The PI system installed in a dedicated server computer is used as the host system.
The PI client is the system that interacts with real world devices and acquires data using
different interfaces. The PI host and client system are connected to each other through the
Ethernet network. The interfaces are installed on the client computer which is connected
to the PDC and PLC and acquires the normal OPC SCADA data and the time
synchronized phasors from the PDC. The host acquires the data through the client, and
the client also acts as a buffer system in case of connection failure to the host server. The

Figure 3.11 shown below gives a visual description of the PI system.

PIOPC & C37.118 INTERFACES

Acquireand Transfer

PMU and PLC data

PI Client svstem

Figure 3.12 PI System implementation in the test bed
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3.5.2 Pl system settings and data acquisition

After completing the software installation and establishing a successful
connection through Ethernet to the PI server. The PI OPC and C37.118 interfaces are
installed in the client using the PI Interface Configuration Utility tool (PI ICU) and are
setup to connect with the external data sources. Every connection from the client to the
host should be registered in the host system by creating security trusts. Trusts are created
on the host computer using PI System Management Tool (PI SMT), and each interface is

registered.
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Figure 3.13 PI SMT user window displaying interface list
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Data is acquired from external devices by running the installed interface in the PI

ICU, and by creating data tags. Each data variable is called ‘tag or point’ in the PI system

and is created using PI point builder present in the PI system management tools. The data

validity is checked by opening the current values section of the SMT tool and checking

for continuous stream update.
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Figure 3.14 PI ICU interface running C37.118

The PI Process Book is used to build operator interface for monitoring power

system data. The Process Book application consists of trends which are selected to plot

one PI point or multiple points over certain period of time. The developed trends plot the

data against time stamp updating at user configured intervals or in real time. The data

from the process book is also available for exporting to other systems in standard

industrial protocols.
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Figure 3.15 PI Process Book user interface

3.6 Challenges involved in the development

The test bed developed at MSU PERL lab integrates several hardware and
software devices to mimic an actual power system. Due to the different products
installed, and the varied functionality and complexity of the devices, the test bed
encountered several challenges in its development. This section of the chapter briefly

explains the different factors that posed a problem for the test bed development.
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3.6.1 Deployment of monitoring and control components

The deployment of monitoring and controlling devices into the test bed to
integrate with the RTDS hardware was one of the critical phases of the project. The
devices are chosen carefully to monitor and control the power system simulated in RTDS
with a high level of versatility. Multiple vendor devices are integrated to showcase the
real-world power system automation. Several software interfaces are used to achieve
interoperability between the hardware. The OSI PI Historian is being used at a university
research level, and is implemented to acquire, monitor and archive power system data.
The following section provides a detailed insight into the interoperability and

communication schemes implemented in the success of this test bed.

3.6.2 Interoperability and communication between different hardware

Due to versatile hardware implementation, communication between the devices
for operation of the test bed is a major challenge. The PLC and RTDS present in the test
bed had no direct vendor specified standards for interfacing each other. The
interoperability between these devices was of prime importance for the whole test bed
operation.

The RTDS and PLC system are integrated together by using a third party device,
the NI-PXI real time controller system. There have been some major problems
encountered while acquiring data from the RTDS through the NI DAQ cards, due to
several levels of signal scaling involved. The analog data is first read by the NI PXI
system after scaling and is written to the Allen Bradley PLC by Ethernet/IP industrial
suite present in the LabVIEW system. The analog data is converted to OPC standard data
through NI shared variable engine, and is written to the PLC data tags by pointing to the
device IP address.

52

www.manaraa.com



Deployment of PMU units is achieved with considerable difficulty, with the major
problems being the power system data transfer from the RTDS to the PMUs. The GE
PMUs are real industrial devices, and therefore the scaled signals from the RTDS back
panel are again amplified by the Omicron amplifier and fed to the GE PMUs. The SEL-
421 is wired directly to the back panel.

The PDC is connected to the SEL 421 PMU serially and data capabilities are
limited due to serial connectivity, and the GE PMUs are connected through Ethernet
network. The synchrophasor data acquisition by the PI historian from the PDC is also
hampered by the mismatch of device ID codes and PI interface problems, which took

considerable time for solving.

3.6.3 Real time execution of the test bed

The real time execution is one of the most important factors in the current project.
Real time operation of simulation implies that the specified calculations and processing
operation are completed within a given window of time. The numerous hardware devices
involved created significant problems for real time execution of the complete test case.
The remote control center is one area where the wireless Ethernet network was partially
successful in providing real time data, and is identified in the first phase. The internal
network communications between the devices is boosted from 10 Mbps LAN to 100
Mbps network to account for the large amount synchrophasor data at high speed data
rates. The RTDS is capable of performing simulations with a time step of 2us, and the
PMUs are able to monitor and transfer synchrophasor messages at 60 msgs/sec. The PI

Historian data acquisition is altered to reflect laboratory limitations of limited data
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storage and processing speeds, but not before testing and achieving near real time

monitoring and control operations.
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CHAPTER IV

DEVELOPMENT OF POWER SYSTEM TEST CASES

4.1 Introduction

This chapter explains the development of power system models developed in
RSCAD for simulation on RTDS. A Simple two bus system (test case I) is developed
initially to model a power system with local substation control. The second test case
presented in this chapter includes a five bus power system (test case II) developed as a
wide area operational system. The latter test case is particularly used to demonstrate a
wide area monitoring and control application using synchrophasors. This chapter also
explains the various intermediate schemes developed using the LabVIEW and PLC

systems for the above stated power system simulations.

4.2 Test casel

This section of the chapter explains the modeling and control schemes developed

to demonstrate a local control action using test case 1.

4.2.1 Two bus power system model

A simple two bus power system consisting of two A.C sources acting as
generators is chosen as test case I for demonstration of the automatic local control action.
The power system model consists of two generators operating at nominal frequency of
60Hz at bus 1 supporting two dynamic RL loads connected to bus 2 of the system over a

Bergeron type transmission line model. The generators are connected to bus 1 through
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circuit breakers for each of the generators and the current is monitored for fault
conditions. These breakers are operated manually to simulate a power system

contingency in case of a generator failure. Figure 4.1 below shows the power system test

case model.
Test Case 1
BUS 1 BUS 2
N v 4_-‘ I Load 1
~— M.CB 1 A.CB1
Gen 1 Lo )
Transmission Line
/] [ Load 2
R M.CB 2 A.CB 1
Gen 2
M- Manual
A-Automatic

Figure 4.1  Two bus power system model

4.2.2 Control scheme

The main aim of this test case is to demonstrate real time local control in case of
unforeseen failure of the power system components. The control scheme is designed such
that circuit breakers placed in each of the generator’s lines can be operated manually to
simulate a fault on any of the phases and when this occurs the system may becomes
unstable or stressed. Next to bring back the system to normal operation, one of the
corresponding loads on bus 2 is shed. This is achieved by monitoring the breaker currents
on the generator side. This scheme is a closed loop control, and the control actions are

sent back in to simulated power system. A Control mechanism also monitors the system
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constantly and brings back the load into the system once the fault is cleared and the
generator becomes operational. This control logic runs continuously and monitors the
system for faults and implements the corresponding corrective actions necessary. Though
the load shedding scheme is not the optimum remedial actions for these types of faults,

here it is only employed to show the operation of the developed test bed.

4.2.3 RSCAD model

The RSCAD model shown in Figure 4.2 is the actual power system test case
simulated in using the RSCAD software. This model is divided into three parts, actual
power system, analog output block and digital input block.

The actual power system model consists of the two generators rated for 200MW
and 300 MW respectively and two dynamic RL loads rated at 230 MW each. A Bergeron
type transmission models is used and there are circuit breakers provided at the generator
and load buses for monitoring and control action. The analog output block actually
consists of DDAC RTDS component for routing the monitoring phase currents from each
of the generator circuit breakers. The currents are first converted into rms signals through
inbuilt components and are transferred into the DDAC block through output nodes. The
DDAC component makes these signals available through the back panel of the RTDS for
further connection to the DAQ cards of the NI-PXI system. Scaling of the analog signals
from this block is very important and the scaling factors are chosen carefully to prevent

attenuation of the original signal value.
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Simple Power System Test Case
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Figure 4.2  Two bus system: RSCAD model

The digital input block modeled in RSCAD actually consists of flexible control
logic to operate the breakers on the load side i.e. on bus 2 for load shedding operation.
The front panel ports on RTDS will take digital control coming from the PLC through the
NI-PXI system for timely operation of the breakers on bus 2. This signal is used as the
breaker control signal assigned in the circuit breaker modeling menu. These signal status

values are also monitored on the RSCAD interface.
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424 LabVIEW code

The LabVIEW and the NI-PXI module act as the intermediate interface for data
communication and visualization of the operation between PLC and the RTDS.
LabVIEW system works here as a two way interface translator commonly used in real
system. After the physical connections are made between the PXI system and the RTDS
and also the PLC and the PXI system, the LabVIEW code deployed plays very important
role essentially acting as a data driver. The LabVIEW code can be divided into two
sections for explanatory purposes, the input section and the output section.

The input section of the developed code mainly serves two purposes, data
acquisition from RTDS and transfer to PLC module. Figure 4.3 shown below provides

the input section of the code.
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Figure 4.3  Input section of the LabVIEW code
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This section performs the essential function of acquiring the analog power system
data from RTDS through the DAQ assistant from six analog channels and then writes this
data into the PLC tags through the use of Ethernet/IP industrial communication suite. The
other important operation performed by this section is, the conversion of analog data into
OPC data for monitoring and archiving by the PI system and also graphical interface for
the LabVIEW front panel.

The output section of the developed code performs similar functions as the input
section but the difference being the data being handled is the control signals read from
PLC and sent to RTDS. This also executes a small logic to generate a digital signal after
receiving the control command from the PLC for any operation on the system running on

the RTDS. The Figure 4.4 shows the output section of the code.
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Figure 4.4  Output Section of the LabVIEW code
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4.2.5

PLC control logic

The programmable logic controller is the hardware system, which monitors and

controls the actions to be taken on the developed simulated power system in case of any

failures. A Ladder Logic (LL) program is written and deployed in the PLC for the

continuous operation. The LL program is partially shown in Figure 4.5
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The LabVIEW program writes the data into the PLC system tags which are the

analog voltages of the generator phases. The first part monitors the three phases in

parallel for any possible failures and activates a timer in case of fault or fault clearance of

the system to eliminate any actions due to transient disturbances. Once the timer times
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out, a control signal is activated and sent to the RTDS for corresponding action on the
load side breaker and also the load status is updated in the system. This program runs
continuously irrespective of the number of failures of the generator or cleared faults. The
NI-PXI system is primarily used as the intermediate interface for the PLC to reduce the
cost associated with PLC I/0 modules as the connection over Ethernet provides for
unlimited number of tags to be used, and to act as source for OPC data for monitoring

and archiving by the PI server.

4.2.6 Data monitoring and archiving

The PI server system performs the data monitoring and archiving for this test case
using the PI OPC interface. The shared variable engine in LabVIEW converts the analog
RMS current signals into OPC data. The OPC data is then read by the PI interface client
and is transferred to the server where it is monitored and stored. The process book
accesses this data and displays it with live trending, the interface also provides the status
variables to be recorded and displayed by the process book interface. The stored system
data can be later accessed in required formats like the ASCII, Comtrade and CSV

formats.

4.3 Test Case Il

This section of the chapter introduces the concept of voltage stability and presents
the five bus power system test case developed to validate stability problem using phasor

measurement units and synchrophasors.

4.3.1 Voltage stability

As the modern power system are pushed to their operating limits by the utilities

due to increasing demand for power, it is essential to maintain stable operation of the
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power system. One of the main factors is the voltage stability concept. Voltage stability is
defined as the power system capability to maintain steady state voltages at all buses under
normal operating conditions and after being subjected to a disturbance [3]. Voltage
collapse is a more critical failure of the system voltages due to cascaded failure of
transmission lines due to initial voltage instability. Voltage instability can be due to three
major factors,

1. Loss of generator due to which the reactive power demand of the system is
not met causing voltage instability.

2. Loss of a transmission line which may lead to an additional stress on the
adjacent transmission lines and may develop into cascade failures.

3. Unforeseen increase in load demand especially reactive power demand
which is not being met by the existing power generation and control
devices.

The above factors are taken into account while modeling the 5 bus system which
demonstrates the application of the developed test bed in detecting voltage instabilities

using synchrophasors.

4.3.2 Five bus power system model

The five bus power system model developed for voltage stability testing is
inspired by [25]. It consists of three generators supporting two loads through a
transmission network. Two phasor measurement units are placed on buses 1 and 2 to
monitor the bus voltage phasors which provide the system state in real time. A line to
ground fault is added into the transmission network to simulate transmission line failure,

similarly other cases like the generator three is controlled though a circuit breaker to
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simulate loss of generation fault case. Finally, an extra load is introduced into system to

simulate an increase in reactive power demand on the load side of the system. The one

line diagram of the developed system is shown in Figure 4.6
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Figure 4.6  Five bus power system model

4.3.3 RSCAD model

The five bus system is modeled in RSCAD for simulating on RTDS. The RSCAD

model is shown in Figure 4.7. The developed model is divided into four parts the actual

power system, fault logic, analog output block and digital input block. The actual power

system consists of three generators rated at 500 MW, 700 MW and 600 MW

correspondingly. It also consist of two dynamic R-L loads with adjustable P and Q

values, the third load is used to simulate the increase in reactive power demand by adding

it into the system abruptly, causing voltage instability. The generator three is controlled

manually by a circuit breaker to initiate a loss of generation test case.

64

www.manaraa.com



The fault logic circuit simulates a line to ground fault scenario to trip a
transmission line in case of a failure. The phasor measurement units are placed on buses 1
and 2 which are actually analog voltage signals by the DDAC analog output block
transferring the system voltages and currents from RTDS. The digital output block brings
the control signals into the simulation from relay. An angle difference component is also

place to calculate the system voltage angle in real time for observing the system status.
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Figure 4.7  Five bus RSCAD model

4.3.4 PMU Settings and operation

Two phasor measurement units, an SEL 421 and a GE D60 are used to provide

synchrophasor measurements for monitoring and operation of this test case. These units
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are placed on bus 1 and bus 2 of the developed system show in Figure 4.6 calculate and
provide phasor voltage magnitudes and angles in IEEE C37.118 format along with digital
and analog tags. These synchrophasor messages are collected by the phasor data
concentrator to alter it into a single stream of synchrophasor data. The PDC output can
then be used by the PI server for monitoring and archiving the PMU data.

The setting of each PMU is very important for proper function of the device. The
SEL-421 is configured to send synchrophasor messages at a rate of 60 msgs/sec by
enabling the global setting in the SEL-421 device. It is connected to SEL-3306 PDC
serially and is configured to send all the voltages and an equivalent current component
phasor to the PDC at baud rate of 38500. The GE D60 is connected to the SEL-3306 PDC
through Ethernet and the settings are enabled through the Enervista setup software and
the synchrophasor report setting is activated. This device is configured to send all the
voltage and current components over the Ethernet network. The GE D60 provides
synchrophasors in C7.118 standard at a rate of 60 msgs/sec over Ethernet using UDP_T
protocol. Each of the PMU’s must be provided with High priority IRIG-B signal which is
demodulated DC level shift signal.

The SEL-3306 settings are carefully done by using the browser interface provided
for the device. First, the input serial port is enabled for incoming synchrophasors from
SEL-421 PMU and similarly corresponding Ethernet port is enabled for GE D60
messages. All the setting including the message format, frame rate and data standards are

provided in chapter 3.
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4.3.5 Data monitoring and archiving

The data monitoring and archiving of the five bus system is performed by the PI
server system using the C37.118 interface. The interface is installed in the client system
through the PI ICU and the phasor data concentrator is set to provide data to this system.
The PI C37.118 acquires the synchrophasor data and transfers it to the server for
archiving and monitoring. The PDC provides a number of tags in addition to voltage
phasors which provide important information regarding the state of the system. The
installed system currently is acquiring 283 pmu data tags from three PMU’s and is readily
capable of displaying them in the PI process book interface. The PI process book display
is designed to provide voltage magnitudes and angles acquired from the synchrophasor
messages for real time trending. This application is also capable of calculating angle
difference in real time and a trend is created to display the same in real time and provides

valuable information regarding stability issues with power system.
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CHAPTER V

RESULT ANALYSIS AND APPLICATIONS OF DEVELOPED TEST BED

5.1 Introduction

This chapter provides details for the operation of the test bed with the developed
test cases mentioned earlier in chapter IV. The operation and control of both the test cases
with hardware devices-in-the-loop are explained and presented with supporting results.
The PI system data archiving and retrieving of the stored data is also presented in detail.
This chapter includes the applications of test bed and also the scope of utilizing the

developed test bed.

5.2 Power system test case operation

This section of the chapter explains the operation of the developed test cases. The
operation of the test cases is designed to cover different critical areas in power system
operation and control. The first case simulates the local control action in case of any
failure in the system. The second is designed to incorporate synchrophasor application for

monitoring the power system state in real time and for post event analysis.

5.2.1 Test case I operation

The test case I modeled in RSCAD (refer to Figure 4.2) is designed to prototype a
local control action in a laboratory environment using a programmable logic controller.
The generators in the system are connected to BUS1 through the circuit breakers which

are manually operated to simulate a fault scenario for generator failure.
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The operation of this test case is as follows,

1. The normal operation of the system has two generators supporting two
loads. The three phase RMS currents at the generator are monitored
continuously for fault by the PLC and also monitored and archived by the
PI system.

2. The breaker at the generator side is manually operated to simulate a fault
in any one of the phases, and in this case the fault is simulated on phase B

3. The control program running in the PLC detects this fault as a loss of
generation due to protective relay operation and initiates a command to
shed one of the loads to make the system stable and balanced. This fault
and control is also monitored by the PI operator interface which has alarm
capability to alert the operator of the system status.

4. The control command from the PLC automatically operates the breaker on
the load side detaching one of the loads, and the system status is updated.

5. The continuous monitoring of the RMS currents allows the system to
detect the change if the generator comes back to its normal operation and
immediately the load is bought back into the system to retain its normal
operation.

6. The LabVIEW VI front panel developed also allows to monitor the system
state and actions being performed acting as an intermediate operator
interface. The NI-PXI system responsible for analog and digital signal
transfer between the RTDS and the PLC system.

7. All the data is available through the PI system for post event analysis and
is a very valuable tool for study of the power system operation.
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5.2.2 Test case I results

The three phase rms current signals and status of the loads is monitored from the

RSCAD system interface as shown in Figure 5.1
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Figure 5.1  Normal Operation of system-Test case 1

The system operating normally all the currents are in phase and are at standard

values of 0.7 kA. The control signal statuses are at 1 indicating that generators and loads

are intact.
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Figure 5.2  Test case I- Phase B fault

Figure 5.2 shows the fault scenario, where the fault was simulated by manual
opening the phase B of the generator 1 breaker, which can happen by protective relay
operation after the fault. Due to breaker operation, the current drops to zero and the other
currents from generator B increase resulting in imbalance of the system. At the same
time, in designed interface, load status LED’s and control signals change their states
indicating the action has been taken immediately and the load has been shed out of the
system to retain normal operation of the system. The control signals are issued by the

PLC. There is also a provision to limit the control action in case of transient conditions
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by means of a timer provided and also the monitoring threshold limits can be changed to

achieve this flexibility.
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Figure 5.3

Test Case I - System recovery from fault

Figure 5.3 provides the system details during the recovery. The phase B breaker is

closed manually to eliminate the simulated fault and the PLC logic immediately detects

this change and issues another control to close the load side breaker and bring the load

back into the system for normal operation. The load status indicators change indicating

that the load is back into operation.
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The LabVIEW program developed for the PXI system operation also acts as an
intermediate monitoring and alarm interface. The front panel of the VI has plots which
update in real time with RMS current data from the generators and any status change of
generators or loads is detected by the LEDs status. Figure 5.4 provides a sample view of

the system in case of generator one, phase A failure.
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Figure 5.4  Intermediate LabVIEW interface.
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Figure 5.5  Test case I- PI Process book interface

The PI system acts as the main tool to acquire and archive the power system data

during the operation of this test case. All the system branch currents are monitored and

stored by the PI server through PI OPC server interface on the client computer. The

LabVIEW converts the analog data into OPC data for the PI interface. The PI system also

monitors and acts as a real time operator interface by providing real time trending of the

data plots and also updating the system states through blinking LED indicators. PI

Process Book provides the functionality of monitoring the PI data in real time. The

Figure 5.5 shows the interface with data trending from past 1 Hr and the current status of

generators with failure generator 2, phase A.
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5.2.3  Test case II operation

The five bus power system (shown in Figure 4.7) is modeled in RSCAD for
simulating the voltage stability problems and to demonstrate the use of synchrophasors
for monitoring and archiving of the power system data using PI server system. The test
bed for this operation includes two PMU’s for generating synchrophasors to monitor the
simulated power system and the PI C37.118 interface logs the data of normal operation
and all the events occurring during the simulation.

The operation of the developed test case Il is as follows,

1. The developed system consists of three generators supporting two loads
and an additional load for increase in reactive power demand, a line to
ground fault provision on transmission line and a circuit breaker to control
operation of generator three.

2. During the normal operation of the test case the node bus voltages as
measured by the PMU’s stand at 186.5 kV on each bus and there exists a
constant phase angle difference of 28.76 degree with fairly small transient
variations.

3. The first phase of the test case involved applying an L-G fault of 80 cycles
on the transmission line to disturb the voltage stability of the system. This
fault disturbance is immediately picked up by PMUs as they are
continuously monitoring and sending the data at a rate of 60 msgs/sec.
This transition is recorded by the PI system and can be observed on the PI
process book interface provided in real time.

4. The second phase of the simulation involves disturbing the balance of the

system by suddenly increasing the reactive power demand by adding an
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additional load into the system. The system unable to meet the demand
undergoes severe oscillations which can be observed by monitoring the
angle difference parameter. This is also monitored and archived by the PI
system.

5. Finally the system is subjected to sudden loss of generation by simulating
the breaker opening connecting generator three with the remaining system
and the fluctuation in voltages and phase angle difference is monitored
and archived.

The importance of this test case is to demonstrate application of synchrophasors
in detecting the transient system parameters with very minimal time constraint and also
providing the voltage angle calculations in real time. The PI system setup acts as a very

powerful tool in monitoring and archiving synchrophasor data.

5.2.4 Test case II results

This section of the chapter provides the detailed results obtained in execution of
test case developed on RSCAD for voltage stability analysis through synchrophasor
measurements.

As explained previously, the system normally operating supports to loads through
a transmission network with a phase angle difference of 28.76 deg between two major
buses. The Figures 5.6 and 5.7 provide the system normal operating conditions in
RSCAD interface and also through PI process book which is operating with generated

synchrophasor data.
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Figure 5.6  Test case II-RSCAD visualization during normal operation
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Figure 5.7  Test case II- PI process book monitoring interface

The first part of the simulation towards testing the voltage stability issues is done
by applying a line to ground fault on the phase A of bus 5 for 80 cycles. The immediate
result being a disturbance in major bus voltages i.e. bus 1 and 2. The instability can be
seen by observing the phase angle difference which directly relates to the power flow
through the system. In this case the phase angle difference is observed to be deviating
from normal before settling down after the fault clearance. The PMU’s placed on the
buses 1 and 2 will provide the synchrophasors which are acquired by the PI system and
the L-G fault is observed on the process book interface as well. Figures 5.8 and 5.9

provide the L-G fault visualization in RSCAD and PI system interfaces.
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The second part of the test case simulation involved testing the voltage stability
with a sudden increase in reactive power demand. This simulated by adding a extra load
to the stable system and observing the fluctuations caused in the voltage levels and phase
angles of the major buses 1 and 2. The captured results are shown in Figures 5.10 and
5.11 and it is observed that indeed the major bus voltages are subjected to large
fluctuation resulting in the instability of the system. This is further strengthened by
observing the phase angle difference between the two buses which is subjected to
oscillations. The synchrophasors provided by the PMU’s accurately report the data and is

observed by the PI system with precision.
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Figure 5.10 RSCAD Load increase fault capture
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Figure 5.11 PI process book capture load demand increase

The final simulation run of the test case involves by inducing a fault due to loss of
generation. This can be interpreted as, the system operating under normal circumstances
as designed will meet all the active and reactive power demand needed by the loads. But
if anyone of the generator fails the system becomes unstable due to its inability to meet
the required demand by the loads. This condition in test case II is simulated by operating
the breaker controlling the generator three. It is observed indeed there is a large amount
of voltage fluctuations in the major bus voltages and the phase angle difference also
oscillates considerably. These system oscillations can be visualized by referring to the
RSCAD system state capture in Figure 5.12, and the phasor data provided by the installed

PMU’s through the PI system in Figure 5.13.
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The PI system plays a very important role in acquiring and archiving the phasor
data. The large amount of phasor data from the two PMU’s installed in the system is first
sent to the Phasor Data Concentrator and the PI C37118 interface acquires the data from
the PDC. All the data is archived and updated at a specific update rate configured by the
user depending on the amount of data storage capabilities. The illustration of this task can
be observed by referring to Figure 5.14 in which all the three faults applied on test case II

are recorded in a time span of 15 min.
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Figure 5.14 PI process book capturing all the system states

All the data obtained by the PI system is from PMU’s and it can be seen that the
data is archived and presented over a period of time in which all the faults are occurred.
This is particularly useful for visualizing the system state over a period of time and is

very helpful in post event analysis and is very accurate due to the synchrophasor data
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instead of SCADA data. The PI excel plug-in is another very useful tool which is used in
this project to extract the archived synchrophasor data from the PI system and plotting it
again. This plug-in provides numerous options to recall archived data by selecting data to
be recalled on the basis of days, time interval, number of points and also data
calculations. The data can be retrieved as an average or after performing inbuilt custom
calculations, and is extensively used in this work to test the validity of the archived data.

The following captured Figure 5.15 shows one instance of such use.
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Figure 5.15 PI excel plug-in usage to retrieve archived data
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5.3 Scope of utilizing the test bed

The developed real time test bed is flexible to carry multiple testing procedures.
The test bed which includes Real Time Digital Simulator acts as a powerful platform and
allows multiple power system tests to be performed. In the current work two different test
cases are conducted, the first case implementing the automatic load shedding procedure
using PLC and the second case demonstrating the voltage stability issues with enhanced
measurement and archiving capabilities using PMU’s and PI server system. These two
test cases only demonstrate the few applications of this test bed and much larger systems
can be simulated and tested with different algorithms and Hardware in Loop (HIL)
simulations can be performed with ease. The test bed specifically aimed at providing
varied tools including software and hardware for wide area applications combined with
the synchrophasor technology. The other critical applications are outlined in the

following sections.

5.3.1 PMU and PDC test facility

The current operations of smart grid activities are growing at a rapid pace.
Recently, the U.S department of energy’s proposed multiyear program plan for smart grid
research & development plan [26] to increase the ongoing efforts towards smart grid.
The first step towards the smart grid is the enhancement of measurement and control for
automation of the existing power system in which synchrophasors play a major role. The
current lab setup at Mississippi State Universities PERL lab is capable of testing different
devices and can act as a small scale test facility. The developed test bed incorporated two
GE PMU’s and SEL-421 for testing the interoperability of the devices, this work also

successfully implemented and tested phasor data concentrator to combine the PMU data.
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5.3.2  Cyber security studies

As the power system network is rapidly undergoing transition [27] to smart grid
with increased automation capabilities by incorporating large number of newly designed
fully automated devices, the security of the devices is of utmost importance for the
survival of the grid. Since the large amounts of critical data and automated control
actions are being done through communication network it is highly important to secure
them along with devices to eliminate cyber threat attacks. Efforts are underway at MSU
PERL lab for testing the cyber security issues with PMU and PDC devices. The
developed test bed is very useful in allowing the test to be performed as the entire
network is built on Ethernet/IP as well as radio network. It allows for testing intrusions
by third party and also hacking of system critical information. As the test bed employs
IEEE C37.118 data standard for synchrophasor data it allows for the testing of the

protocol strength against malicious cyber attacks.

5.3.3 Power Engineering Education and Device Operation Demonstration

The power systems area at present is rapidly making strides with new
advancements in technologies for the efficient operation of the power grid. It is essential
to develop interest and awareness among the power engineering students to be a part of
the future power grid projects. In this regard there is a very limited availability of
resources for the students to practically visualize and work with power systems. Though
previous works like [28] exist for improvement in the curriculum structure, there very
few facilities like Drexel university’s IPSL laboratory [14], which actual provide good
practical understanding of the power system.

The developed test bed in the present research work can be implemented to
demonstrate the operation of a scaled down power grid operation and EMS applications

87

www.manaraa.com



to the students for enhancing their interest in this area. The developed test bed can
simulate different power system simulation and can be very beneficial if it is used in the

current curriculum for implementation of the theoretical concepts.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Power system monitoring and control is a large application area with continuous
development in order to enhance the level of automation being applied to renovate the
power grid. Especially, with the smart grid research initiative, the power system
infrastructure is being strengthened at a rapid pace. In this thesis work, a real time
automated power system network and control test bed is developed at the laboratory level
to test and validate new algorithms and devices before implementation in a physical grid.
The development of this test bed is achieved by integrating several hardware devices and
software interfaces for enhanced automation and control. The integrated hardware
devices are from different vendors and are particularly chosen to test and validate the
interoperability standards between these devices. This work also contributed towards the
study of different data transfers options from an RTDS system, and devised a new
methodology to integrate PLC and RTDS using the National Instruments NI-PXI system
for real time application. The first phase of the research work involved successfully
modeling and simulating a simple power system test case to demonstrate real time control
action through the developed test bed. This was successfully completed by automatic
control action taken by the PLC during a faulty scenario simulated during the simulation

run on RTDS.
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The second phase of the research work involved more complex application of
power system devices for monitoring and post event analysis functions using
synchrophasors. For this purpose the entire test bed was built around Ethernet/IP to
facilitate higher communication speeds and to achieve flexibility with devices that are
connected to the network. The Ethernet/IP communication allows the test bed to have the
capability of installing the new hardware as simple plug and play systems. The
synchrophasor application is demonstrated by integrating a GE and an SEL PMU device
into the power system simulator for hardware in loop simulation and is configured to
send the synchrophasor measurement at a rate of 60 msgs/sec to the phasor data
concentrator.

A five bus power system test case was developed to demonstrate the
synchrophasor application. The power system simulated was subjected to different faults
to study the voltage stability problem associated and the usefulness of the synchrophasor
data stream. The other major achievement in this work is the inclusion of PI server
system for monitoring and archiving of the entire power system critical data. The PI
system inclusion played a major part in the application of synchrophasor data archiving
and post event analysis of the power system simulations.

The highlights of this research are as follows:

» Developed a communication bridge between RTDS and PLC for
simulating a local control action.

» Major part of the test bed is built on Ethernet/IP communication network
to achieve flexibility with new devices and most importantly for testing

the security issues with the new devices.
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» Integrated phasor measurement units and data concentrators for successful
implementation of synchrophasor application.

» Successfully installed and demonstrated the PI server system for
monitoring and archiving the power system data including the
synchrophasors in real time.

» Demonstrate the interoperability of different devices integrated in single
testing platform

» Developed several test scenarios for two test cases to demonstrate few

possible applications

6.2 Future Work

In this work, the development of a test bed is performed through integration of
multiple devices for wide area monitoring applications. The synchrophasor data
applications extend only to real time monitoring and post event analysis. There is
considerable scope in developing and demonstrating real time control action for power
system operation and control using synchrophasors. Efforts are already underway for real
time control using SEL synchrophasor vector processor. This work integrates only a
single hardware phasor data concentrator and an implementation of TVA’s Open PDC
can be included into the test bed. The other major future applications of this test bed are
for testing and validating different power system protection and control devices as well as
algorithms. Research efforts are in progress to test the security and strengthen the devices
against malicious cyber attacks and this facility can be used to test different vendor
hardware and software for synchrophasor applications before being actually substituting

in the power grid. Developed test cases could be integrated in coursework to train
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students for industrial device operations and also can be utilized to expand knowledge of

power systems in a broader perspective by demonstrating wide area operations on the test

bed.
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